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Generating large sparse random graphs and
networks

For studying and predicting behaviour of Internet,
communication, transportation, biological, social and other
types of networks the simulation approach is usually used. As a
support for it we need efficient generators of networks of the
corresponding types [6, 12].
Large networks are usually (very) sparse – Dunbar’s number
[14]. Therefore the average degree in the network is not large.
For this reason the standard (based directly on the definitions)
algorithms for generating random graphs of selected type can
be inefficient. In Batagelj and Brandes [5] we presented some
fast algorithms for generating large sparse random graphs and
networks of different types.
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Generation of random graphs of Gilbert’s type

For example, the generation of random graphs of Gilbert’s type is
equivalent to the filling of lower triangle of graph’s adjacency matrix
with Bernoulli sequence with parameter p of length

(
n
2

)
. In

generating large and sparse such graphs we can replace it with puting
the value 1 in positions determined by the corresponding
geometrically distributed steps. This gives us much faster generator –
see next slide.
Since in large sparse networks the probability p is very small in the R
function Gilbert the parameter p is replaced by a more intuitive
average degree ad and computed internally using the relation

ad = p · (n − 1)

obtained from

ad =
1

n

∑
v∈V

deg(v) =
2m

n
and p =

2m

n(n − 1)
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Generation of random graphs of Gilbert’s type in R

Gilbert <-
# generates a random undirected graph of Gilbert’s type
# on n nodes with expected average degree ad and writes
# it on the file fnet in Pajek’s format.
# based on ALG.1 from: V. Batagelj, U. Brandes:
# Efficient generation of large random networks
function(fnet,n,ad){

net <- file(fnet,"w"); cat("*nodes",n,
"\n% random Gilbert’s graph / n = ",n," ad = ",ad,
"\n*edges\n",file=net)

logQ <- log(1-ad/(n-1)); v <- 1; w <- -1
repeat{

w <- w + 1 + trunc(log(1-runif(1,0,1))/logQ)
while (w >= v) {w <- w-v; v <- v+1}
if (v >= n) break
cat(v+1,w+1,’\n’,file=net)

}
close(net)

}

Gilbert("gilbert.net",100,3.0)
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Generation of random scale-free networks

Similary, representing edges with pairs of nodes and observing
that the number of copies of a node in a table equals its
degree, we get the following fast generator of scale-free graphs.
Examples of graphs generated with both algorithms are
displayed on the following slide.
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Generation of random scale-free networks

ScaleFreeBrstNet <-
# generates a random directed scale free graph
# on n nodes with d attachments to existing nodes
# and stores it on the file fnet in Pajek’s format
# based on ALG.5 from: V. Batagelj, U. Brandes:
# Efficient generation of large random networks
function(fnet,n,d){

net <- file(fnet,"w"); cat("*vertices",n,"\n",file=net)
k <- 0; m <- (n-d)*d; L <- rep(0,2*m); v <- d+1
cat(’% random scale free graph / n = ’,n,’ d = ’,d,’\n’,file=net)
for(u in 1:d){k <- k+1; L[k] <- v; k <- k+1; L[k] <- u}
for(v in (d+2):n) {

repeat{S <- unique(L[sample(1:k,d)]); if(length(S)==d) break}
for(i in 1:d) { k <- k+1; L[k] <- v; k <- k+1; L[k] <- S[i]}

}
cat("*arcs\n",file=net)
for (i in 1:m) cat(L[[2*i-1]],L[[2*i]],’\n’,file=net)
close(net)

}

ScaleFreeBrstNet("scaleFree.net",100,2)
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Random graph of Gilbert’s type, n = 100, ad = 3;
and scale-free random graph, n = 100, d = 2

Pajek

Pajek
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Degree distribution of scale-free random graph,
n = 1000000, d = 3
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Probabilistic inductive classes of graphs

A random network can be viewed also as a result of an
evolution process starting from some simple network in which
next network is obtained from the current network using some
(local) transformation. Some such models are implemented in
programming language Netlogo [22] (see next slide).

The class of graphs/networks that can be obtained in this way
can be described using inductive definitions (Curry [7], Batagelj
[1]) or in more formalized setting using Lindenmayer’s systems
[20] or graph grammars (Ehrig et al. 1991 [9]). In our research
we prefer the less formal inductive definitions because they are
easier to adapt to specific characteristics of the classes of our
interest.
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Netlogo: evolution of scale-free network and
spreading of the virus
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Hilbert’s space-filling curve
inductive definition [4]
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Hilbert’s space-filling curve
Logo program

TO Hilb :n :a :h

IF :n = 0 [ STOP ]

RT :a Hilb :n-1 (-:a) :h FD :h LT :a Hilb :n-1 :a :h FD :h

Hilb :n-1 :a :h LT :a FD :h Hilb :n-1 (-:a) :h RT :a

END

TO Hilbert

PU SETPOS [-150 -150] PD SETPC [000 000 255] Hilb 5 90 10

END
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Inductive classes of graphs

In graph theory the inductive descriptions of many classes of
graphs are known [3]. They are often used in proving theorems
using the inductive generalization.

In order to show that every object from the inductive class has
a certain property P it is sufficient to establish that

• every object from the basis has the property P ;

• the generating rules preserve the property P .
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Example: even triangulations[2]

A graph is a triangulation (of the plane/sphere) iff it can be
embedded in the sphere such that all its faces are triangles. A
triangulation is even iff the degree of every node is even.

The inductive class Te = Cn(O;P,Q) is equal to the class of
all even triangulations of the sphere.
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Probabilistic inductive classes of graphs

The notion of inductive class of graphs can be extended by assigning
probabilities to events in the evolution process. In the paper (Kejžar
et al. [15]) we presented the following definition.

A probabilistic inductive class of graphs (PICG ), I, is given by:

1 class B of initial graphs, the basis of PICG,

2 probability distribution specifying how the initial graph is chosen
from class B,

3 class R of generating rules, each with distinguished left element
to which the rule is applied to replace it with the right element,

4 probability distribution specifying how the rules from class R are
applied, and, finally,

5 a set of probability distributions specifying how the left elements
for every rule in class R are chosen.
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Probabilistic inductive classes of graphs

A random graph is obtained by starting from some randomly
selected basic graph from the basis B and applying on it a
randomly selected generating rules from R on randomly
selected subgraph isomorphic to the rule’s left element. On the
so obtained graph the next randomly selected rule is applied,
and so on. The PICG I consists exactly of graphs that can be
obtained in this way in a finite number of steps. The sequence
of graphs corresponding to these steps, enriched with the
information about the applied rule, is called the construction
sequence of a graph from the class.

On the next slide a simple ICG I(B;R1,R2) and an example of
construction sequence are presented.
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Basic graphs and rules
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Probabilistic inductive classes of graphs – examples
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Probabilistic inductive classes of graphs – examples

For the base graphs and rules from the previous slide the ICG
I(B1;R1,R2) is the class of all connected (undirected) graphs,
I(B2;R2,R3) is the class of all 2-node-connected graphs, and
I(B2;R2,R3,R4) is the class of all 2-edge-connected graphs.

In our paper [15] we analyzed these three inductive definitions
for the case when the generating rules have constant
probabilities to be selected and the left part subgraph is
selected with the uniform probability among available
isomorphic subgraphs.

For such relatively simple definitions theoretical answers to
some questions (degree distribution) can be obtained using the
mean-field approach from theoretical physics. For more
complicated definitions it seems that the only way to get some
approximate answers is the simulation approach.
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Probabilistic inductive classes of graphs
comments

The number of classes that can be described as PICGs depends
on the limitations we impose on the language for expressing the
rules. In general we can allow also parametrized schemes of
rules that produce rules only after specifying the values of
parameters – they are finitely describing possibly infinite sets of
rules. If needed we can also introduce a precedence among
groups of rules – the rules with lower precedence are applied
only when no rule with higher precedence can be applied.

In December 2017 Jason Vallet from Bordeaux will defend his
PhD thesis in which he is proposing a detailed elaboration of
rule selection mechanism [21].

V. Batagelj Network evolution



Network
evolution

V. Batagelj

Generation

PICGs

References

Probabilistic inductive classes of graphs
comments

In networks the graph structure is enriched by values in nodes
and/or on links. Often they can be treated as colors. Taking a
given network as a base network and introducing the rules that
change colors, we can use PICGs also for studying different
processes on networks – for example balancing in the signed
networks [13], spreading of viruses, voting, etc.

An interesting question to be solved is also how to estimate the
probabilities of generating rules from the realized
graphs/networks. Recently [17] I learned about the
Approximate Bayesian computation approach that could
provide a solution.
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